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of the fluid layer boundary. If the fluid flow in the shell is not stratified, then as we 
knows the system loses stability for significantly higher stream velocities (I',> V,,, flutter). 
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THROUGH THE 
HALF-STRIPS* 

A numerical solution of the problem of the incidence of plane harmonic 
waves on the interfacial boundary of two joined half-strips with different 
elastic properties is presented. A detailed analysis is given of the 
reflection and transmission of the incident wave energy through the inter- 
facial boundary, and the nature of the state of stress and strain is 
investigated in its neighbourhood. The wave fields in longitudinally 
inhomogeneous media were studied earlier in /l-3/ etc. 

1. We examine an infinite strip of thickness 2h. We connect it to an Z,Z Cartesian 
system of coordinates such that the z axis is orthogonal to the strip boundaries while the z 
axis coincides with its middle line. Let the plane boundary z=O be the line separating 
the properties of the material, and let A&T&3Pk be the elastic moduli and the density of the 
material to the left of the interfacial boundary (t<CJ,k=i) and to the right of it @>O,k= 
2). we shall assume the boundaries of the strip Z= -&h to be stress-free. 

We introduce the fcur-dimensional vector W= (u, w,u,T)~ characterizing the wave field in 
the strip into the consideration. Bere U = i&x, u) = U* are the displacement vector components 

and D = a,,, 2 = TXI are the corresponding stress tensor components. 
Let a plane normal Lamb wave of unit amplitude W~!)(z,y)l))exp[i ($)z- Qt)] be incident from 

Z= -ZC onto the interfacial boundary, where S.J = ohlc is the dimensionless frequency (c- max. 
(f&p,, f/i"zip,}), $) isthej-th wavenumber related to Q by the Rayleigh-Lamb dispersion equation 

/4/r and WY) is a four-dimensional vector whose components are determined for compression-ten- 
sion waves by the relationships 

al* + Yj" sh a& 
St=-- 

& sh a!& 

The superscript k= 1,2 in parentheses indicates that the quantities belong to themedium 
located, respectively, to the left or the right of the interfacial boundary of the material 
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in the first and second half-strips, taking the 

represented in the form 

WC’) = WY’ (2, yp+ exp [i (y5’)s - Lx)] $ (1.1) 

EA I* St’ w (a - y(‘))cxp [i (- y’” -Bf)] ’ I 111 

w(2) .sx ZA,nWy (2, y$f’) exp [i ($‘z -s-h)] 

Im yp > 0; c&myp > 0 (In’ yp = 0) 

Here and henceforth the summation is from n= 1 to IL=oo. 

Remark. For definite values of Q when dQ/dy= 0 the Rayleigh-Lamb equationhasmultiple 

eigenvalues. In this case additional components corresponding to associated eigenfunctions 

occur in the relationships (1.1). See /5/ for more details. 

A ,n and A,, in (1.1) are the amplitudes of the reflected and transmitted waves. The 

waves which propagate correspond to real yix) and inhomogeneous waves localized near the t=O 

boundary and decaying with distance from it correspond to complex $'. 

Taking account of the relationships (l.l), the continuity condition for the displacements 

and the-stress vector on the interfacial boundary 

w(l) = W(Z), x = 0 (1.2) 

can be written in the form (the factor exp(-St) is omitted) 

W$Q(yj"') + ZAI,W$)(-yyt,f')= ~~~~W~)(~~)) (1.3) 

We use the generalized orthogonality condition /6, 7/ to reduce the functional equations 

(1.3) to algebraic equations 

Pi")=O, Imyik)#O; P\")+O, imyj")=O; U = E o 
I I 

(0 is the zeroth and E the unit 2x2 matrix). 
The quantity Pjr) in (1.4) determines the mean energy flux per period transportedthrough 

the transverse section z= const by a wave with the wave number VI'). 

bultiplying relationship (1.3) scalarly successively by UW~“)(-y~(I)), ~W~~z)(y~~~) and 

using condition (1.4), we arrive at an infinite pairwise system of algebraic equations 

&O-@)A m Im = XbnmAen, ~i~-lP~A~~ = 4*.51 

- Zi;,,,,,Al, + (Wju($)) UW(2)(y(2))) ’ mm 
(tJnm = (w:)(g)). UW(‘) (- $1))) r?l 111 . m = 1, 3, . . .) 

The method of reduction is used to solve system (1.5), here the sufficiency criterion 

for the reduction was the degree of compliance with the matching conditions (1.2). 

Besides all travelling waves, up to four pairs of inhomogeneous wavesineach of the half- 

strips were taken into account in the formation of the systems in practical computations. The 

error in complying with the conjugate conditions in the displacement did not exceed 1% for 

the maximum quantity UX (2) in the whole frequency band considered. The accuracy in satisfying 

the matching conditions in the stresses for a given number of inhomogeneous waves taken into 

account in the interval 121 <h (lLZe)(a is the singularity index in the stresses at angular 

points that occur for definite unions of the media making contact /a/) did not exceed 5-6% of 

the maximum value of C+(Z) in the incident wave. 

When there are singularities the series in the stresses in the segment h(1 -Za)<z$h 

diverge for z=O and generalized methods of summation and regularization /9, lo/ must be 

drawn upon to satisfy the matching conditions in the whole IZ I <h interval. 

After the values of the amplitudes have been found from the infinite system, the equality 

of the incident wave energy to the sum of the reflected and transmitted wave energies is 
verified, which was an additional criterion for the reliability of the results obtained. 

2. The values of the amplitudes A,,,,A,, found from the reduced system permit complete 
determination of the wave fields in both half-strips and execution of an energy analysis of 
the process of wave reflection and transmission through the boundary z=O. 

Dispersion curves of each of the half-strips and the frequency dependenceofthereflection 
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coefficient 

1 Al,,, 12 P(l) m 

are represented in Fig.1 (the ratio between the reflected and incident wave energies N is the 

number of waves propagating at this frequency) in the case of symmetric waveguide oscillations 
during incidence of the first normal compression-tension wave on the interfacial boundary. 

The dispersion curves for the left half-strip are displayed bysolidlines for h,=206'GM/m2, 

153~ti/m2, p,= f8.Txlo3 kg/m3 and by dashes for the right half-strip for 
PI - 

32.6 GN/mL, p2= 2.7~10~ kg/mI. 
h,'=59.2 GN/m2, Jr, r- 

R 

1 2 3 RPb 

Fig.1 

The 51,. Q,(kJ,Qp(k),Q,(k) in Fig.1 are certain characteristic frequencies of the process of 

wave reflection through the boundary. The frequencies QO(KJ, $,('J, %("J are determined by the 

dispersion curves for the k-th strip. The group velocity vanishes at the frequency Q,("J while 

Q,ckJ, QS(lcJ correspond to the thickness-stretch and the thickness-shear resonance frequencies 

and are determined from the known formulas /4/ 

Q’k’ _ n(2m-t 1) A, + 2P, 5 
P 2h -I 

Pk Ph. 1 
m=0,1,2,... 

The frequency Q, is determined numerically for each pair of materials and lies in the 

domain when just one travelling wave, comprising approximately 0.85-0.9 of the quantity 61, = 

min(Q,c’),Q,(2~} propagates in the reflected and transmitted field. 

Certain general regularities in the behaviour of k, are clarified on the basis of a 

series of computations executed for different combinations of elastic properties of the 

materials making contact. 

For Q < Q* the reflection coefficient is constant over the whole band in practice and 

is identical with the value obtained on the basis of computations by bar theory. An abrupt 

decrease in the coefficient ?+ is observed upon approaching the frequency Q, which reaches 

its minimum value for Q = Q,. The latter is related to the fact that a significant increase 

in the modulus of the amplitude of the first reflected non-propagating wave \A,,\ occurs at 

this frequency. 

Fig.2 Fig.3 
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The ratio &= \A,,/A,,\ of the amplitude moduli of the reflected first inhomogeneous and 
propagating waves as a function of the frequency is represented in Fig.2 by a solid line for 
the mentioned pair of materials. The magnitude of the maximum of this ratio depends very much 
on the elastic properties of the materials'making contact. Thus, if the material properties 
of the first half-strip remain unchanged, while softer material, say, with the moduli 

p,=93.5 kg/m3, 
.& = 

2.29 ~tVrn2, pl=1.53 GN/m2, is selected as material for the second half-strip, 
then the first non-propagating mode is excited much more significantly at the frequency Q*' 
(the dashed line in Fig.2). The frequency 62,' here is shifted somewhat relative to Q*, which 
is related to the change in the parameters, and is close to the edge resonance frequency for 
the first half-strip /41. 

The occurrence of intense oscillations localized in the neighbourhood of the half-strip 
interfacial boundary is characteristic for the behaviour of the solution at the frequency 52,. 
The computed mode of the oscillations in the neighbourhood of the half-strip interfacial 
boundary at the frequency R,, which it is natural to call the boundary resonance frequency, 
is represented in Fig.3. The concept of boundary resonance can here be considered as a natural 
extension of the edge resonance concept to the case of two adjacent waveguides. 

The magnitude of the minimum of the reflection coefficient at the frequency 9, obviously 
depends on the material parameters of the joined half-strips. For the first pair of materials 
considered above more than 96% of the incident wave energy is transported into the second 
medium for &I = Q* since this fraction comprises approximately 48% (Fig.11 far Q<Q,. For 
the second pair of materials more than 60% of the energy is transported into the secondmedium 
at the frequency n = Q, while practically all the energy (96%) is reflected from the inter- 
facial boundary in the domain of the frequency SJ<Q*. 

The next characteristic feature in the behaviour of the reflection coefficient is its 
increase on approaching the frequency Q,, starting with which three travellinq waves appear 
in the reflected or transmitted field. The quantity kr reaches its maximum value, approaching 
one, at the frequency Q,, which corresponds to practically total, reflection of the incident 
wave energy, 

As the frequency increases further, the behaviour of k, is noticeably more complieated 
and depends substantially on the mutual arrangement of the dispersion curves, particularly 
on the mutual arrangement of the thickness-stretch a6"' and thickness-shear Qi"' resonance 

frequencies (k= 1,2). Of the clarified regularities in the behaviour of the reflection 
coefficient at Q >Q, we note the presence of local minima of kr in the neighbourhood of 
the low thickness-stretch resonances p Q(I) and p $$a) (Fig.1). 

The compl,exity of the behaviour of k, in the frequency domain when several travelling 
waves start to propagate in the waveguideismanifest in the redistribution of the energy 
transported by each wave when the frequency changes. The percentage incident wave energy 
distribution between the reflected and transmitted travelling waves participating in the 
wave process (shown on parentheses) is presented in the table in different frequency bands for 
the pair of materials considered above. 

It is seen from the table that the first travelling wave is the most energy filled in 
the frequency domain considered in the transmitted field while a mutual reflected wave energy 
redistribution is observed in the reflected field. Thus, the energy content of the first wave 
gradually drops with the appearance of three propagating reflected waves S$)<Q<Q$$, Q>Q!l) 

while the third wave increases and it becomes most energy-filled in the reflected field. It 
should be noted here that in the frequency band in which the third travelling wave hasopposite 
phase and group velocity signs, the energy redistribution depends substantially on Poisson's 
ratio vz in the first medium. Thus if vt > 'I, (in this case Qg' > np') then the energy- 

content of the third travelling wave increases somewhat but does not exceed the energy content 
of the first. 

The analysis performed for energy reflection and transmission through the interfacial 
boundary of half-strips over a broad frequency band enables us to conclude that for a definite 
pair of materials the greatest transmission of energy from one medium to another for it is 
observed at the boundary resonance frequency 9,. Practically total energy transmissionthrough 
the boundary of a composite waveguide is observed here at this frequency for many combinations 
of materials in contact. 
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Frequency 
range R 1 

0.6 48.3t51.7) 

1.76 3.9(96.1) 

1.64 40.6(59.4) 

1.9 86.1(0.4) 

1.92 42.8(6.8) 

2.01 3.6(20.6) 

2.04 26.5(47.2) 

2.2 68.9(6.6) 

2.23 45.3(16.9) 

2.44 3.3(28.3) 

2.67 0.1(34.9) 

3.0 3.45(43.7) 

- 

I - 2 I 3 

- 

- 

6.2 

14.6 

15.4 

26.3 

4.5 

5.9 

2.7(1.1) 

1.5i2.0) 

1.45(1.7) 

- 

- 

- 

7.5 

35.8 

60.4 

- 

- 

31.9 

63,4(1.2) 

61.5(-j 

49.3(0/Q 
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